Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.164
Filtrar
1.
Oncol Res ; 32(4): 679-690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560575

RESUMO

Liver cancer is a prevalent malignant cancer, ranking third in terms of mortality rate. Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer. Hepatocellular carcinoma (HCC) has low expression of focal adhesion kinase (FAK), which increases the risk of metastasis and recurrence. Nevertheless, the efficacy of FAK phosphorylation inhibitors is currently limited. Thus, investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis. This study examined the correlation between FAK expression and the prognosis of HCC. Additionally, we explored the impact of FAK degradation on HCC metastasis through wound healing experiments, transwell invasion experiments, and a xenograft tumor model. The expression of proteins related to epithelial-mesenchymal transition (EMT) was measured to elucidate the underlying mechanisms. The results showed that FAK PROTAC can degrade FAK, inhibit the migration and invasion of HCC cells in vitro, and notably decrease the lung metastasis of HCC in vivo. Increased expression of E-cadherin and decreased expression of vimentin indicated that EMT was inhibited. Consequently, degradation of FAK through FAK PROTAC effectively suppressed liver cancer metastasis, holding significant clinical implications for treating liver cancer and developing innovative anti-neoplastic drugs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Linhagem Celular Tumoral , Prognóstico , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Invasividade Neoplásica/genética , Metástase Neoplásica
2.
Oncol Res ; 32(4): 615-624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560567

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies. A specific mechanism of its metastasis has not been established. In this study, we investigated whether Neural Wiskott-Aldrich syndrome protein (N-WASP) plays a role in distant metastasis of PDAC. We found that N-WASP is markedly expressed in clinical patients with PDAC. Clinical analysis showed a notably more distant metastatic pattern in the N-WASP-high group compared to the N-WASP-low group. N-WASP was noted to be a novel mediator of epithelial-mesenchymal transition (EMT) via gene expression profile studies. Knockdown of N-WASP in pancreatic cancer cells significantly inhibited cell invasion, migration, and EMT. We also observed positive association of lysyl oxidase-like 2 (LOXL2) and focal adhesion kinase (FAK) with the N-WASP-mediated response, wherein EMT and invadopodia function were modulated. Both N-WASP and LOXL2 depletion significantly reduced the incidence of liver and lung metastatic lesions in orthotopic mouse models of pancreatic cancer. These results elucidate a novel role for N-WASP signaling associated with LOXL2 in EMT and invadopodia function, with respect to regulation of intercellular communication in tumor cells for promoting pancreatic cancer metastasis. These findings may aid in the development of therapeutic strategies against pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542070

RESUMO

Monomeric C-reactive protein (mCRP) has recently been implicated in the abnormal vascular activation associated with development of atherosclerosis, but it may act more specifically through mechanisms perpetuating damaged vessel inflammation and subsequent aggregation and internalization of resident macrophages. Whilst the direct effects of mCRP on endothelial cells have been characterized, the interaction with blood monocytes has, to our knowledge, not been fully defined. Here we showed that mCRP caused a strong aggregation of both U937 cell line and primary peripheral blood monocytes (PBMs) obtained from healthy donors. Moreover, this increase in clustering was dependent on focal adhesion kinase (FAK) activation (blocked by a specific inhibitor), as was the concomitant adhesive attachment to the plate, which was suggestive of macrophage differentiation. Confocal microscopy confirmed the increased expression and nuclear localization of p-FAK, and cell surface marker expression associated with M1 macrophage polarization (CD11b, CD14, and CD80, as well as iNOS) in the presence of mCRP. Inclusion of a specific CRP dissociation/mCRP inhibitor (C10M) effectively inhibited PBMs clustering, as well as abrogating p-FAK expression, and partially reduced the expression of markers associated with M1 macrophage differentiation. mCRP also increased the secretion of pro-inflammatory cytokines Interleukin-8 (IL-8) and Interleukin-1ß (IL-1ß), without notably affecting MAP kinase signaling pathways; inclusion of C10M did not perturb or modify these effects. In conclusion, mCRP modulates PBMs through a mechanism that involves FAK and results in cell clustering and adhesion concomitant with changes consistent with M1 phenotypical polarization. C10M has potential therapeutic utility in blocking the primary interaction of mCRP with the cells-for example, by protecting against monocyte accumulation and residence at damaged vessels that may be predisposed to plaque development and atherosclerosis.


Assuntos
Aterosclerose , Proteína C-Reativa , Humanos , Proteína C-Reativa/metabolismo , Monócitos/metabolismo , Inflamação/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células Endoteliais/metabolismo , Células U937 , Aterosclerose/metabolismo
4.
Med ; 5(4): 348-367.e7, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38521069

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) cancer cells specifically produce abnormal oncogenic collagen to bind with integrin α3ß1 receptor and activate the downstream focal adhesion kinase (FAK), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) signaling pathway. Collectively, this promotes immunosuppression and tumor proliferation and restricts the response rate of clinical cancer immunotherapies. METHODS: Here, by leveraging the hypoxia tropism and excellent motility of the probiotic Escherichia coli strain Nissle 1917 (ECN), we developed nanodrug-bacteria conjugates to penetrate the extracellular matrix (ECM) and shuttle the surface-conjugated protein cages composed of collagenases and anti-programmed death-ligand 1 (PD-L1) antibodies to PDAC tumor parenchyma. FINDINGS: We found the oncogenic collagen expression in human pancreatic cancer patients and demonstrated its interaction with integrin α3ß1. We proved that reactive oxygen species (ROS) in the microenvironment of PDAC triggered collagenase release to degrade oncogenic collagen and block integrin α3ß1-FAK signaling pathway, thus overcoming the immunosuppression and synergizing with anti-PD-L1 immunotherapy. CONCLUSIONS: Collectively, our study highlights the significance of oncogenic collagen in PDAC immunotherapy, and consequently, we developed a therapeutic strategy that can deplete oncogenic collagen to synergize with immune checkpoint blockade for enhanced PDAC treatment efficacy. FUNDING: This work was supported by the University of Wisconsin Carbone Cancer Center Research Collaborative and Pancreas Cancer Research Task Force, UWCCC Transdisciplinary Cancer Immunology-Immunotherapy Pilot Project, and the start-up package from the University of Wisconsin-Madison (to Q.H.).


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Integrina alfa3beta1 , Projetos Piloto , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Colágeno , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Microambiente Tumoral
5.
BMC Cancer ; 24(1): 334, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475740

RESUMO

BACKGROUND: Ribosomal RNA processing protein 15 (RRP15) has been found to regulate the progression of hepatocellular carcinoma (HCC). Nevertheless, the extent to which it contributes to the spread of HCC cells remains uncertain. Thus, the objective of this research was to assess the biological function of RRP15 in the migration of HCC. METHODS: The expression of RRP15 in HCC tissue microarray (TMA), tumor tissues and cell lines were determined. In vitro, the effects of RRP15 knockdown on the migration, invasion and adhesion ability of HCC cells were assessed by wound healing assay, transwell and adhesion assay, respectively. The effect of RRP15 knockdown on HCC migration was also evaluated in vivo in a mouse model. RESULTS: Bioinformatics analysis showed that high expression of RRP15 was significantly associated with low survival rate of HCC. The expression level of RRP15 was strikingly upregulated in HCC tissues and cell lines compared with the corresponding controls, and TMA data also indicated that RRP15 was a pivotal prognostic factor for HCC. RRP15 knockdown in HCC cells reduced epithelial-to-mesenchymal transition (EMT) and inhibited migration in vitro and in vivo, independent of P53 expression. Mechanistically, blockade of RRP15 reduced the protein level of the transcription factor POZ/BTB and AT hook containing zinc finger 1 (PATZ1), resulting in decreased expression of the downstream genes encoding laminin 5 subunits, LAMC2 and LAMB3, eventually suppressing the integrin ß4 (ITGB4)/focal adhesion kinase (FAK)/nuclear factor κB kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway. CONCLUSIONS: RRP15 promotes HCC migration by activating the LAMC2/ITGB4/FAK pathway, providing a new target for future HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Processamento Pós-Transcricional do RNA , Proteínas Ribossômicas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , Fatores de Transcrição/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
6.
Mol Cancer ; 23(1): 33, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355583

RESUMO

BACKGROUND: Circular RNAs are highly stable regulatory RNAs that have been increasingly associated with tumorigenesis and progression. However, the role of many circRNAs in triple-negative breast cancer (TNBC) and the related mechanisms have not been elucidated. METHODS: In this study, we screened circRNAs with significant expression differences in the RNA sequencing datasets of TNBC and normal breast tissues and then detected the expression level of circRPPH1 by qRT‒PCR. The biological role of circRPPH1 in TNBC was then verified by in vivo and in vitro experiments. Mechanistically, we verified the regulatory effects between circRPPH1 and ZNF460 and between circRPPH1 and miR-326 by chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization assay, dual luciferase reporter gene assay and RNA pull-down assay. In addition, to determine the expression of associated proteins, we performed immunohistochemistry, immunofluorescence, and western blotting. RESULTS: The upregulation of circRPPH1 in TNBC was positively linked with a poor prognosis. Additionally, both in vivo and in vitro, circRPPH1 promoted the biologically malignant behavior of TNBC cells. Additionally, circRPPH1 may function as a molecular sponge for miR-326 to control integrin subunit alpha 5 (ITGA5) expression and activate the focal adhesion kinase (FAK)/PI3K/AKT pathway. CONCLUSION: Our research showed that ZNF460 could promote circRPPH1 expression and that the circRPPH1/miR-326/ITGA5 axis could activate the FAK/PI3K/AKT pathway to promote the progression of TNBC. Therefore, circRPPH1 can be used as a therapeutic or diagnostic target for TNBC.


Assuntos
MicroRNAs , Fatores de Transcrição , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , 60414 , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Integrinas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas de Ligação a DNA/metabolismo
7.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38326036

RESUMO

Intercellular adhesion molecule-1 (ICAM-1) is identified as an initiator of neuroinflammatory responses that lead to neurodegeneration and cognitive and sensory-motor deficits in several pathophysiological conditions including traumatic brain injury (TBI). However, the underlying mechanisms of ICAM-1-mediated leukocyte adhesion and transmigration and its link with neuroinflammation and functional deficits following TBI remain elusive. Here, we hypothesize that blocking of ICAM-1 attenuates the transmigration of leukocytes to the brain and promotes functional recovery after TBI. The experimental TBI was induced in vivo by fluid percussion injury (25 psi) in male and female wild-type and ICAM-1-/- mice and in vitro by stretch injury (3 psi) in human brain microvascular endothelial cells (hBMVECs). We treated hBMVECs and animals with ICAM-1 CRISPR/Cas9 and conducted several biochemical analyses and demonstrated that CRISPR/Cas9-mediated ICAM-1 deletion mitigates blood-brain barrier (BBB) damage and leukocyte transmigration to the brain by attenuating the paxillin/focal adhesion kinase (FAK)-dependent Rho GTPase pathway. For analyzing functional outcomes, we used a cohort of behavioral tests that included sensorimotor functions, psychological stress analyses, and spatial memory and learning following TBI. In conclusion, this study could establish the significance of deletion or blocking of ICAM-1 in transforming into a novel preventive approach against the pathophysiology of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Molécula 1 de Adesão Intercelular , Animais , Feminino , Humanos , Masculino , Camundongos , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Sistemas CRISPR-Cas , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Leucócitos , Paxilina , Proteínas rho de Ligação ao GTP/metabolismo
8.
Respir Physiol Neurobiol ; 323: 104237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38354845

RESUMO

The airway epithelium serves as a critical interface with the external environment, making it vulnerable to various external stimuli. Airway epithelial stress acts as a catalyst for the onset of numerous pulmonary and systemic diseases. Our previous studies have highlighted the impact of acute stress stimuli, especially bacterial lipopolysaccharide (LPS) and hydrogen peroxide (H2O2), on the continuous elevation of intracellular chloride concentration ([Cl-]i). However, the precise mechanism behind this [Cl-]i elevation and the consequential effects of such stress on the injury repair function of airway epithelial cells remain unclear. Our findings indicate that H2O2 induces an elevation in [Cl-]i by modulating the expression of CF transmembrane conductance regulator (CFTR) and Ca-activated transmembrane protein 16 A (TMEM16A) in airway epithelial cells (BEAS-2B), whereas LPS achieves this solely through CFTR. Subsequently, the elevated [Cl-]i level facilitated the injury repair process of airway epithelial cells by activating focal adhesion kinase (FAK). In summary, the [Cl-]i-FAK axis appears to play a promoting effect on the injury repair process triggered by stress stimulation. Furthermore, our findings suggest that abnormalities in the [Cl-]i-FAK signaling axis may play a crucial role in the pathogenesis of chronic airway diseases. Therefore, controlling the structure and function of airway epithelial barriers through the modulation of [Cl-]i holds promising prospects for future applications in managing and treating such conditions.


Assuntos
Cloretos , Regulador de Condutância Transmembrana em Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Cloretos/metabolismo , Cloretos/farmacologia , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Células Epiteliais/metabolismo
9.
Biochem Biophys Res Commun ; 703: 149575, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38382357

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, with a median survival of less than 12 months and a 5-year survival of less than 10 %. Here, we have established an image-based screening pipeline for quantifying single PDAC spheroid dynamics in genetically and phenotypically diverse PDAC cell models. Wild-type KRas PDAC cells formed tight/compact spheroids - compaction of these structures was completely blocked by cytoplasmic dynein and focal adhesion kinase (FAK) inhibitors. In contrast, PDAC cells containing mutant KRas formed loosely aggregated spheroids that grew significantly slower following inhibition of polo-like kinase 1 (PLK1) or focal adhesion kinase (FAK). Independent of genetic background, multicellular PDAC-mesenchymal stromal cell (MSC) spheroids self-organized into structures with an MSC-dominant core. The inclusion of MSCs into wild-type KRas PDAC spheroids modestly affected their compaction; however, MSCs significantly increased the compaction and growth of mutant KRas PDAC spheroids. Notably, exogenous collagen 1 potentiated PANC1 spheroid compaction while ITGA1 knockdown in PANC1 cells blocked MSC-induced PANC1 spheroid compaction. In agreement with a role for collagen-based integrin adhesion complexes in stromal cell-induced PDAC phenotypes, we also discovered that MSC-induced PANC1 spheroid growth was completely blocked by the ITGB1 immunoneutralizing antibody mAb13. Finally, multiplexed single-cell immunohistochemical analysis of a 25 patient PDAC tissue microarray revealed a relationship between decreased variance in Spearman r correlation for ITGA1 and PLK1 expression within the tumor cell compartment of PDAC in patients with advanced disease stage, and elevated expression of both ITGA1 and PLK1 in PDAC was found to be associated with decreased patient survival. Taken together, this work uncovers new therapeutic vulnerabilities in PDAC that are relevant to the progression of this stromal cell-rich malignancy and which may reveal strategies for improving patient outcomes.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Detecção Precoce de Câncer , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Colágeno/metabolismo , Junções Célula-Matriz/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Linhagem Celular Tumoral
10.
Cell Death Dis ; 15(2): 108, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302407

RESUMO

The prognosis of osteosarcoma (OS) has remained stagnant over the past two decades, requiring the exploration of new therapeutic targets. Cytokines, arising from tumor-associated macrophages (TAMs), a major component of the tumor microenvironment (TME), have garnered attention owing to their impact on tumor growth, invasion, metastasis, and resistance to chemotherapy. Nonetheless, the precise functional role of TAMs in OS progression requires further investigation. In this study, we investigated the interaction between OS and TAMs, as well as the contribution of TAM-produced cytokines to OS advancement. TAMs were observed to be more prevalent in lung metastases compared with that in primary tumors, suggesting their potential support for OS progression. To simulate the TME, OS and TAMs were co-cultured, and the cytokines resulting from this co-culture could stimulate OS proliferation, migration, and invasion. A detailed investigation of cytokines in the co-culture conditioned medium (CM) revealed a substantial increase in IL-8, establishing it as a pivotal cytokine in the process of enhancing OS proliferation, migration, and invasion through the focal adhesion kinase (FAK) pathway. In an in vivo model, co-culture CM promoted OS proliferation and lung metastasis, effects that were mitigated by anti-IL-8 antibodies. Collectively, IL-8, generated within the TME formed by OS and TAMs, accelerates OS proliferation and metastasis via the FAK pathway, thereby positioning IL-8 as a potential novel therapeutic target in OS.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Macrófagos Associados a Tumor/metabolismo , Interleucina-8/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Macrófagos/metabolismo , Neoplasias Pulmonares/patologia , Osteossarcoma/patologia , Citocinas/metabolismo , Neoplasias Ósseas/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Movimento Celular
11.
ACS Appl Mater Interfaces ; 16(8): 9944-9955, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354103

RESUMO

The complex interplay between cells and materials is a key focus of this research, aiming to develop optimal scaffolds for regenerative medicine. The need for tissue regeneration underscores understanding cellular behavior on scaffolds, especially cell adhesion to polymer fibers forming focal adhesions. Key proteins, paxillin and vinculin, regulate cell signaling, migration, and mechanotransduction in response to the extracellular environment. This study utilizes advanced microscopy, specifically the AiryScan technique, along with advanced image analysis employing the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) cluster algorithm, to investigate protein distribution during osteoblast cell adhesion to polymer fibers and glass substrates. During cell attachment to both glass and polymer fibers, a noticeable shift in the local maxima of paxillin and vinculin signals is observed at the adhesion sites. The focal adhesion sites on polymer fibers are smaller and elliptical but exhibit higher protein density than on the typical glass surface. The characteristics of focal adhesions, influenced by paxillin and vinculin, such as size and density, can potentially reflect the strength and stability of cell adhesion. Efficient adhesion correlates with well-organized, larger focal adhesions characterized by increased accumulation of paxillin and vinculin. These findings offer promising implications for enhancing scaffold design, evaluating adhesion to various substrates, and refining cellular interactions in biomedical applications.


Assuntos
Adesões Focais , Mecanotransdução Celular , Paxilina/metabolismo , Vinculina/metabolismo , Adesões Focais/metabolismo , Adesão Celular/fisiologia , Polímeros/metabolismo , Fosfoproteínas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo
12.
Cells ; 13(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334670

RESUMO

Truncating mutations in filamin C (FLNC) are associated with dilated cardiomyopathy and arrhythmogenic cardiomyopathy. FLNC is an actin-binding protein and is known to interact with transmembrane and structural proteins; hence, the ablation of FLNC in cardiomyocytes is expected to dysregulate cell adhesion, cytoskeletal organization, sarcomere structural integrity, and likely nuclear function. Our previous study showed that the transcriptional profiles of FLNC homozygous deletions in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly comparable to the transcriptome profiles of hiPSC-CMs from patients with FLNC truncating mutations. Therefore, in this study, we used CRISPR-Cas-engineered hiPSC-derived FLNC knockout cardiac myocytes as a model of FLNC cardiomyopathy to determine pathogenic mechanisms and to examine structural changes caused by FLNC deficiency. RNA sequencing data indicated the significant upregulation of focal adhesion signaling and the dysregulation of thin filament genes in FLNC-knockout (FLNCKO) hiPSC-CMs compared to isogenic hiPSC-CMs. Furthermore, our findings suggest that the complete loss of FLNC in cardiomyocytes led to cytoskeletal defects and the activation of focal adhesion kinase. Pharmacological inhibition of PDGFRA signaling using crenolanib (an FDA-approved drug) reduced focal adhesion kinase activation and partially normalized the focal adhesion signaling pathway. The findings from this study suggest the opportunity in repurposing FDA-approved drug as a therapeutic strategy to treat FLNC cardiomyopathy.


Assuntos
Cardiomiopatias , Filaminas , Células-Tronco Pluripotentes Induzidas , Humanos , Cardiomiopatias/metabolismo , Filaminas/genética , Filaminas/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sarcômeros/metabolismo , Transdução de Sinais
13.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396816

RESUMO

Focal adhesions (FAs) play a crucial role in cell spreading and adhesion, and their autophagic degradation is an emerging area of interest. This study investigates the role of Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) in regulating autophagy and FA stability in brain endothelial cells, shedding light on its potential implications for cerebrovascular diseases. Our research reveals a physical interaction between THSD1 and FAs. Depletion of THSD1 significantly reduces FA numbers, impairing cell spreading and adhesion. The loss of THSD1 also induces autophagy independently of changes in mTOR and AMPK activation, implying that THSD1 primarily governs FA dynamics rather than serving as a global regulator of nutrient and energy status. Mechanistically, THSD1 negatively regulates Beclin 1, a central autophagy regulator, at FAs through interactions with focal adhesion kinase (FAK). THSD1 inactivation diminishes FAK activity and relieves its inhibitory phosphorylation on Beclin 1. This, in turn, promotes the complex formation between Beclin 1 and ATG14, a critical event for the activation of the autophagy cascade. In summary, our findings identify THSD1 as a novel regulator of autophagy that degrades FAs in brain endothelial cells. This underscores the distinctive nature of THSD1-mediated, cargo-directed autophagy and its potential relevance to vascular diseases due to the loss of endothelial FAs. Investigating the underlying mechanisms of THSD1-mediated pathways holds promise for discovering novel therapeutic targets in vascular diseases.


Assuntos
Adesões Focais , Trombospondinas , Doenças Vasculares , Humanos , Autofagia , Proteína Beclina-1/metabolismo , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Fosforilação , Doenças Vasculares/metabolismo , Trombospondinas/metabolismo
14.
Cell Signal ; 117: 111066, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281617

RESUMO

Lung adenocarcinoma (LUAD) is the most commonly diagnosed subtype of lung cancer worldwide. Inhibitor of growth 3 (ING3) serves as a tumor suppressor in many cancers. This study aimed to elucidate the role of ING3 in the progression of LUAD and investigate the underlying mechanism related to integrin ß4 (ITGB4) and Src/focal adhesion kinase (FAK) signaling. ING3 expression in LUAD tissues and the correlation between ING3 expression and prognosis were analyzed by bioinformatics databases. After evaluating ING3 expression in LUAD cells, ING3 was overexpressed to assess the proliferation, cell cycle arrest, migration and invasion of LUAD cells. Then, ITGB4 was upregulated to observe the changes of malignant activities in ING3-overexpressed LUAD cells. The transplantation tumor model of NCI-H1975 cells in nude mice was established to analyze the antineoplastic effect of ING3 upregulation in vivo. Downregulated ING3 expression was observed in LUAD tissues and cells and lower ING3 expression predicated the poor prognosis. ING3 upregulation restrained the proliferation, migration, invasion and induced the cell cycle arrest of NCI-H1975 cells. Additionally, ITGB4 expression was negatively correlated with ING3 expression in LUAD tissue. ING3 led to reduced expression of ITGB4, Src and p-FAK. Moreover, ITGB4 overexpression alleviated the effects of ING3 upregulation on the malignant biological properties of LUAD cells. It could be also found that ING3 upregulation limited the tumor volume, decreased the expression of ITGB4, Src and p-FAK, which was restored by ITGB4 overexpression. Collectively, ING3 inhibited the malignant progression of LUAD by negatively regulating ITGB4 expression to inactivate Src/FAK signaling.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Integrina beta4/genética , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Quinases da Família src , Humanos
15.
Environ Toxicol ; 39(5): 2732-2740, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251951

RESUMO

BACKGROUND: Cervical cancer, a life-threatening disease, is the seventh most commonly detected cancer among women throughout the world. The present study investigated the effect of tretinoin on cervical cancer growth and metastasis in vitro and in vivo in the mice model. MATERIALS AND METHODS: Cell Counting Kit-8, clonogenic survival, and transwell chamber assays were used for determination cells proliferation, colony formation, and invasiveness. Western blotting assay was used for assessment of protein expression whereas AutoDock Vina and Discovery studio software for in silico studies. RESULTS: Tretinoin treatment significantly (p < .05) reduced the proliferation of HT-3 and Caski cells in concentration-based manner. Incubation with tretinoin caused a significant decrease in clonogenic survival of HT-3 and Caski cells compared with the control cultures. The invasive potential of HT-3 cells was decreased to 18%, whereas that of Caski cells to 21% on treatment with 8 µM concentration of tretinoin. In HT-3 cells, tretinoin treatment led to a prominent reduction in p-focal adhesion kinase (FAK), matrix metalloproteinases (MMP)-2, and MMP-9 expression in HT-3 cells. Treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. The metastasis of tumor in model cervical cancer mice group was effectively inhibited in spleen, intestines, and peritoneal cavity. In silico studies showed that tretinoin interacts with alanine, proline, isoleucine, and glycine amino acid residues of FAK protein to block its activation. The 2-dimensional diagram of interaction of tretinoin with FAK protein revealed that tretinoin binds to alanine and glycine amino acids through conventional hydrogen bonding. CONCLUSION: In summary, tretinoin suppressed the proliferation, colony formation, and invasiveness of cervical cancer cells in vitro. It decreased the expression of activated focal adhesion kinase, MMP-2, and MMP-9 in HT-3 cells in dose-dependent manner. In silico studies showed that tretinoin interacts with alanine and glycine amino acids through conventional hydrogen bonding. In vivo data demonstrated that treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. Therefore, tretinoin can be developed as an effective therapeutic agent for cervical cancer treatment.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Neoplasias do Colo do Útero/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Linhagem Celular Tumoral , Regulação para Baixo , Metaloproteinase 9 da Matriz/metabolismo , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Alanina/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Glicina/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Aminoácidos/uso terapêutico , Invasividade Neoplásica , Movimento Celular
16.
Int Immunopharmacol ; 128: 111552, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280335

RESUMO

Colonic mucosal defect constitutes the major reason of recurrence and deterioration of ulcerative colitis (UC), and mucosal healing has become the therapeutic endpoint of UC. Unfortunately, specific promoter of mucosal healing is still absent. Our previous researches demonstrated that arctigenin could alleviate colitis symptoms in mice, but whether it has a positive impact on colonic mucosal healing remains unclear. This study explores whether and how arctigenin promotes mucosal healing. Orally administered arctigenin was shown to alleviate colitis in mice primarily by enhancing mucosal healing. In vitro, arctigenin was shown to promote the wound healing by accelerating colonic epithelial cell migration but not proliferation. Acceleration of the focal adhesion turnover, especially assembly, is crucial for arctigenin promoting the cell migration. Arctigenin was able to activate focal adhesion kinase (FAK) in colonic epithelial cells through directly binding with Tyr251 site of FAK, as evidenced by surface plasmon resonance assay and site-directed mutagenesis experiment. In the colonic epithelial cells of UC patients and colitis mice, FAK activation was significantly down-regulated compared with the controls. Arctigenin promoted colonic epithelial cell migration and mucosal healing in dextran sulphate sodium (DSS)-induced colitis mice dependent on activating FAK, as confirmed by combined use with FAK inhibitor. In summary, arctigenin can directly promote mucosal healing in colitis mice through facilitating focal adhesion turnover, especially assembly, and consequent migration of epithelial cells via targeting FAK. Arctigenin may be developed as a mucosal healing promoter, and FAK is a potential therapeutic target for UC and other mucosal defect-related diseases.


Assuntos
Colite Ulcerativa , Colite , Furanos , Lignanas , Humanos , Camundongos , Animais , Colite Ulcerativa/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/uso terapêutico , Adesões Focais/metabolismo , Colite/induzido quimicamente , Movimento Celular , Cicatrização , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL
17.
Physiol Rep ; 12(1): e15897, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163671

RESUMO

SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.


Assuntos
Nefrose , Podócitos , Camundongos , Animais , Podócitos/metabolismo , Paxilina/metabolismo , Vinculina/metabolismo , Talina/genética , Talina/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Doxorrubicina/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo
18.
Biomaterials ; 305: 122462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171118

RESUMO

Liver sinusoidal endothelial cells (LSECs) are highly specific endothelial cells which play an essential role in the maintenance of liver homeostasis. During the progression of liver fibrosis, matrix stiffening promotes LSEC defenestration, however, the underlying mechanotransduction mechanism remains poorly understood. Here, we applied stiffness-tunable hydrogels to assess the matrix stiffening-induced phenotypic changes in primary mouse LSECs. Results indicated that increased stiffness promoted LSEC defenestration through cytoskeletal reorganization. LSECs sensed the increased matrix stiffness via focal adhesion kinase (FAK), leading to the activation of p38-mitogen activated protein kinase activated protein kinase 2 (MK2) pathway, thereby inducing actin remodeling via LIM Kinase 1 (LIMK1) and Cofilin. Interestingly, inhibition of FAK or p38-MK2 pathway was able to effectively restore the fenestrae to a certain degree in LSECs isolated from early to late stages of liver fibrosis mice. Thus, this study highlights the impact of mechanotransduction in LSEC defenestration, and provides novel insights for potential therapeutic interventions for liver fibrosis.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Camundongos , Animais , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Fígado/patologia , Cirrose Hepática/patologia
19.
Cancer Immunol Immunother ; 73(1): 18, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240856

RESUMO

Hepatocellular carcinoma (HCC) is the most prevalent malignant tumor worldwide. Within HCC's tumor microenvironment, focal adhesion kinase (FAK) plays a critical role. Regulatory T cells (Treg) modulate the polarization of tumor-associated macrophages , but the relationship between FAK, Treg cells, and macrophages remains underexplored. Phellinus linteus (PL) shows promise as a treatment for HCC due to its pharmacological effects. This study aimed to explore the relationship between FAK and Treg-macrophages and to assess whether PL could exert a protective effect through the FAK process in HCC. Initially, C57BL/6-FAK-/- tumor-bearing mice were utilized to demonstrate that FAK stimulates HCC tumor development. High dosages (200 µM) of FAK and the FAK activator ZINC40099027 led to an increase in Treg (CD4+CD25+) cells, a decrease in M1 macrophages (F4/80+CD16/32+, IL-12, IL-2, iNOS), and an increase in M2 macrophages (F4/80+CD206+, IL-4, IL-10, Arg1, TGF-ß1). Additionally, FAK was found to encourage cell proliferation, migration, invasion, and epithelial-mesenchymal transition while inhibiting apoptosis in HepG2 and SMMC7721 cells. These effects were mediated by the PI3K/AKT1/Janus Kinase (JAK)/ signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase (p38 MAPK)/Jun N-terminal Kinase (JNK) signaling pathways. Furthermore, PL exhibited a potent antitumor effect in vivo in a dose-dependent manner, reducing FAK, Treg cells, and M2 macrophages, while increasing M1 macrophages. This effect was achieved through the inhibition of the PI3K/AKT/JAK/STAT3, and p38/JNK pathways. Overall, our findings suggest that FAK promotes HCC via Treg cells that polarize macrophages toward the M2 type through specific signaling pathways. PL, acting through FAK, could be a protective therapy against HCC.


Assuntos
Basidiomycota , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Linfócitos T Reguladores/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
20.
Int Immunopharmacol ; 128: 111535, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246001

RESUMO

Endothelial cell (EC) barrier dysfunction and increased adhesion of immune inflammatory cells to ECs crucially contribute to acute lung injury (ALI). Angiotensin-converting enzyme 2 (ACE2) is an essential regulator of the renin-angiotensin system (RAS) and exerts characteristic vasodilatory and anti-inflammatory effects. SARS-COV-2 infects the lungs by binding to ACE2, which can lead to dysregulation of ACE2 expression, further leading to ALI with predominantly vascular inflammation and eventually to more severe acute respiratory distress syndrome (ARDS). Therefore, restoration of ACE2 expression represents a valuable therapeutic approach for SARS-COV-2-related ALI/ARDS. In this study, we used polyinosinic-polycytidylic acid (Poly(I:C)), a double-stranded RNA analog, to construct a mouse ALI model that mimics virus infection. After Poly(I:C) exposure, ACE2 was downregulated in mouse lung tissues and in cultured ECs. Treatment with DIZE, an ACE2-activating compound, upregulated ACE2 expression and relieved ALI in mice. DIZE also improved barrier function and reduced the number of THP-1 monocytes adhering to cultured ECs. Focal adhesion kinase (FAK) and phosphorylated FAK (p-FAK) levels were increased in lung tissues of ALI mice as well as in Poly(I:C)-treated ECs in vitro. Both DIZE and the FAK inhibitor PF562271 decreased FAK/p-FAK expression in both ALI models, attenuating ALI severity in vivo and increasing barrier function and reducing monocyte adhesion in cultured ECs. Furthermore, in vivo experiments using ANG 1-7 and the MAS inhibitor A779 corroborated that DIZE-mediated ACE2 activation stimulated the activity of the ANG 1-7/MAS axis, which inhibited FAK/p-FAK expression in the mouse lung. These findings provide further evidence that activation of ACE2 in ECs may be a valuable therapeutic strategy for ALI.


Assuntos
Lesão Pulmonar Aguda , Indóis , Piridinas , Síndrome do Desconforto Respiratório , Sulfonamidas , Animais , Camundongos , Lesão Pulmonar Aguda/tratamento farmacológico , Enzima de Conversão de Angiotensina 2/metabolismo , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/uso terapêutico , Pulmão/metabolismo , Peptidil Dipeptidase A/metabolismo , Síndrome do Desconforto Respiratório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...